Chinasp.ru

Авто Клондайк
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемый стабилизатор напряжения

Регулируемый стабилизатор напряжения

Для получения переменного питающего напряжения обычно применяются различные интегрированные схемы, типичной представительницей которых является схема на регулируемый стабилизатор тока на lm317. Он выполняется в виде корпусной микросхемы с тремя выводами и рассчитан на выходные напряжения от 1,2 до 37 Вольт. Общий вид возможных вариантов его исполнения приводится на рисунке ниже.

Общий вид стабилизатора

Общий вид стабилизатора

Для самостоятельной сборки регулируемого стабилизатора напряжения достаточно к ножкам размещённого на печатной плате или радиаторе корпуса микросхемы подпаять несколько дискретных радиоэлектронных компонентов.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

импульсный стабилизатор тока светодиода

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Читайте так же:
Регулировка молотильного аппарата комбайна енисей 1200

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

стабилизатор тока для светодиода на схеме maxim

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Увеличение стабильности

Улучшенная схема источника тока с температурной стабилизацией

При работе часть энергии рассеивается, происходит нагрев платы и компонентов схемы, параметры плывут, а главное изменяется напряжение насыщения ( U БЭ ) транзистора VT2, те самые

0,7 В будут изменяться, что приведёт к изменению выходного тока.

ТКН (Температурный Коэффициент Напряжения) pn-перехода транзистора отрицательный, при повышении температуры U БЭ будет уменьшаться. Для термостабилизации вводим дополнительно элемент с положительным ТКН – стабилитрон (с U ст > 6.5 В), тогда при нагреве напряжение на одном компоненте (VT2) будет уменьшаться, а на другом (D1) увеличиваться, таким образом получается компенсация. В совершенстве ТКН обоих приборов должен быть равен по величине и противоположным по знаку, а нагрев происходить одинаково (именно поэтому они расположены рядом на плате).

Также добавлен ещё один транзистор VT3, который выступает источником тока для VT2, что придаст ещё большей стабильности, т.к. при изменении напряжения питания в определённом диапазоне ток базы VT2 почти не будет изменяться.

Читайте так же:
Регулировка инерционной катушки ремня безопасности

Расчёт последовательного стабилизатора

Пример расчёта простого компенсационного стабилизатора напряжения последовательного типа

Начальные условия: входное напряжение U0 = 24 В, нестабильность входного напряжения ΔU0 = ± 2 В, максимальный ток нагрузки IНmax = 1,5 А, коэффициент стабилизации КСТ ≥ 10 3 . Предусмотреть плавную регулировку выходного напряжения в пределах от UНmin = 12 В до UНmax = 16 В.

1. Определим максимальное напряжение коллектор – эмиттер регулирующего транзистора VT1:

2. Определим максимальную мощность, рассеиваемую на транзисторе VT1:

3. По данным расчёта выбираем транзистор VT1, который удовлетворяет условиям:

Этим условиям удовлетворяет транзистор типа П216В с параметрами: UCEmax = 35 В, IC max = 7,5 А, PC max = 24 Вт, h21e = 30.

4. Для создания опорного напряжения UОП выберем стабилитрон типа Д814А с параметрами UСТ = 8 В, IСТ = 20 мА, rDIF = 6 Ом.

5. Определим максимальное напряжение коллектор – эмиттер усилительного транзистора VT2:

6. Исходя из условия UCE2max < UCE max выбираем в качестве усилительного элемента транзистор типа П416 с h21e = 90 … 250.

7. Полагая, что IK2 ≈ IЕ2 = 10 мА < IC max, найдём сопротивление резистора R2:

8. Учитывая, что IR1 = IC(VT2) + IB(VT1), IB(VT1) = IHmax / (1 + h21e(VT1)) = 1,5/(1 + 30) ≈ 48 mA, определим сопротивление R1:

9. Определим сопротивления резисторов R3, R4, R5. Условимся считать, что если движок потенциометра R4 стоит в крайнем верхнем положении, то выходное напряжение стабилизатора имеет заданное по условию минимальное значение UНmin. В крайнем нижнем положении движка выходное напряжение максимально. Тогда можно записать уравнения

Основные характеристики релейного стабилизатора

Стабилизаторы релейного типа подбираются по следующим параметрам:

Байпас

  1. Пиковая мощность — суммарная активная (кВт) и реактивная (кВА) мощность потребителей;
  2. Активная нагрузка — полезная мощность, потребляемая электрооборудованием, которое преобразовывает нагрузку в энергию другого типа – механическую, тепловую и т.д;
  3. Допустимые отклонения входного напряжения и время срабатывания устройства — чем значительнее всплески или проседания входного тока, тем быстрее должен срабатывать стабилизатор;
  4. Пороги защиты от всплесков и проседаний входного тока — при преодолении пороговых значений параметров тока на входе система защиты стабилизатора на несколько секунд отключает нагрузку, после чего возобновляет подачу тока при условии нормализации входного напряжения;
  5. Наличие «байпаса» — режим «байпас» или «обход» позволяет подачу напряжения напрямую на выход стабилизатора в обход его схемы, что упрощает сервисное обслуживание устройства, которое в этом случае выполняется без отключения потребителей;
  6. Наличие тепловой защиты — при нагреве трансформатора до критической температуры система отключает питание стабилизатора на время, необходимое для остывания трансформаторных обмоток;
  7. Диапазон и временный интервал защиты от всплесков и проседаний выходного напряжения — если отклонения параметров выходного тока превышают допустимые пределы, срабатывает защитное реле, которое отключает питание нагрузки.
Читайте так же:
Регулировка клапанов исузу двигатель 4hk1

В связи с описанными выше недостатками электронные стабилизаторы постепенно уходят в прошлое. Они стоят дороже, чем релейные приборы, но при этом все равно не обеспечивают достаточной точности и качества выходного напряжения. В качестве альтернативы для бытового применения многие все чаще используют инверторные стабилизаторы. Они построены на основе более современного метода преобразования, который позволяет избавиться от недостатков, свойственных устройствам на симисторах и тиристорах. В инверторном стабилизаторе напряжение, поступающее на вход, преобразуется в постоянное, а затем снова в переменное, но уже с нужными параметрами. Благодаря этому обеспечивается форма идеальной синусоиды и достигается высокая точность стабилизации (2%).

Инверторные стабилизаторы работают практически бесшумно и имеют полный набор защит – от перегрузок, перегрева, коротких замыканий, аварий в сети. Они являются оптимальным вариантом, если нужно обеспечить питание дорогостоящих устройств, чувствительных к перебоям в электропитании – компьютерной техники, систем отопления, котлов с электронным управлением, систем безопасности загородного дома.

Купив инверторный стабилизатор, вы сможете обеспечить надежную подачу электроэнергии на все электроприборы, которые используются в доме – от мелкой бытовой техники до систем водоснабжения и отопления. Технические особенности инверторного стабилизатора делают его сферу применения намного шире, чем у электронных моделей.

Рынок электронных стабилизаторов напряжения

электронный стабилизатор напряжения Лидер
Вот уже 10 лет, как первенство на рынке удерживают два бренда: стабилизаторы напряжения Вольтер (Volter) и стабилизаторы напряжения Лидер (Lider). Электронная схема и реализация алгоритма у обоих безупречна, однако разработчики стабилизаторов напряжения принципиально используют разные силовые ключи. Вольтер использует мощные тиристорные модули Semikron, а Лидер — меньшие по стоимости тиристоры IXYS.

электронный стабилизатор напряжения Вольтер
Вследствие этого, стабилизаторы Вольтер дороже, но зато в них не используется принудительное охлаждение (нет вентилятора). Стабилизаторы напряжения Лидер, дешевле, но их электронные ключи без принудительного охлаждения перегреваются, поэтому конструкция имеет в своем составе вентиляторы.

Читайте так же:
Надо ли при замене форсунок регулировать

При этом производители обоих брендов уверены, что их подход более правильный. В общем, то это не плохо, когда есть разные точки зрения. Что выбрать: меньшую стоимость или отсутствие вентилятора, покупатель решает в зависимости от своих требований.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector